//! A specialized 2D grid implementation optimized for use in a terminal. use std::cmp::{max, min}; use std::ops::{Bound, Deref, Index, IndexMut, Range, RangeBounds}; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; use crate::index::{Column, Line, Point}; use crate::term::cell::{Flags, ResetDiscriminant}; use crate::vte::ansi::{CharsetIndex, StandardCharset}; pub mod resize; mod row; mod storage; #[cfg(test)] mod tests; pub use self::row::Row; use self::storage::Storage; pub trait GridCell: Sized { /// Check if the cell contains any content. fn is_empty(&self) -> bool; /// Perform an opinionated cell reset based on a template cell. fn reset(&mut self, template: &Self); fn flags(&self) -> &Flags; fn flags_mut(&mut self) -> &mut Flags; } #[derive(Debug, Default, Clone, PartialEq, Eq)] pub struct Cursor { /// The location of this cursor. pub point: Point, /// Template cell when using this cursor. pub template: T, /// Currently configured graphic character sets. pub charsets: Charsets, /// Tracks if the next call to input will need to first handle wrapping. /// /// This is true after the last column is set with the input function. Any function that /// implicitly sets the line or column needs to set this to false to avoid wrapping twice. /// /// Tracking `input_needs_wrap` makes it possible to not store a cursor position that exceeds /// the number of columns, which would lead to index out of bounds when interacting with arrays /// without sanitization. pub input_needs_wrap: bool, } #[derive(Debug, Default, Copy, Clone, PartialEq, Eq)] pub struct Charsets([StandardCharset; 4]); impl Index for Charsets { type Output = StandardCharset; fn index(&self, index: CharsetIndex) -> &StandardCharset { &self.0[index as usize] } } impl IndexMut for Charsets { fn index_mut(&mut self, index: CharsetIndex) -> &mut StandardCharset { &mut self.0[index as usize] } } #[derive(Debug, Copy, Clone)] pub enum Scroll { Delta(i32), PageUp, PageDown, Top, Bottom, } /// Grid based terminal content storage. /// /// ```notrust /// ┌─────────────────────────┐ <-- max_scroll_limit + lines /// │ │ /// │ UNINITIALIZED │ /// │ │ /// ├─────────────────────────┤ <-- self.raw.inner.len() /// │ │ /// │ RESIZE BUFFER │ /// │ │ /// ├─────────────────────────┤ <-- self.history_size() + lines /// │ │ /// │ SCROLLUP REGION │ /// │ │ /// ├─────────────────────────┤v lines /// │ │| /// │ VISIBLE REGION │| /// │ │| /// ├─────────────────────────┤^ <-- display_offset /// │ │ /// │ SCROLLDOWN REGION │ /// │ │ /// └─────────────────────────┘ <-- zero /// ^ /// columns /// ``` #[derive(Clone, Debug)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct Grid { /// Current cursor for writing data. #[cfg_attr(feature = "serde", serde(skip))] pub cursor: Cursor, /// Last saved cursor. #[cfg_attr(feature = "serde", serde(skip))] pub saved_cursor: Cursor, /// Lines in the grid. Each row holds a list of cells corresponding to the /// columns in that row. raw: Storage, /// Number of columns. columns: usize, /// Number of visible lines. lines: usize, /// Offset of displayed area. /// /// If the displayed region isn't at the bottom of the screen, it stays /// stationary while more text is emitted. The scrolling implementation /// updates this offset accordingly. display_offset: usize, /// Maximum number of lines in history. max_scroll_limit: usize, } impl Grid { pub fn new(lines: usize, columns: usize, max_scroll_limit: usize) -> Grid { Grid { raw: Storage::with_capacity(lines, columns), max_scroll_limit, display_offset: 0, saved_cursor: Cursor::default(), cursor: Cursor::default(), lines, columns, } } /// Update the size of the scrollback history. pub fn update_history(&mut self, history_size: usize) { let current_history_size = self.history_size(); if current_history_size > history_size { self.raw.shrink_lines(current_history_size - history_size); } self.display_offset = min(self.display_offset, history_size); self.max_scroll_limit = history_size; } pub fn scroll_display(&mut self, scroll: Scroll) { self.display_offset = match scroll { Scroll::Delta(count) => { min(max((self.display_offset as i32) + count, 0) as usize, self.history_size()) }, Scroll::PageUp => min(self.display_offset + self.lines, self.history_size()), Scroll::PageDown => self.display_offset.saturating_sub(self.lines), Scroll::Top => self.history_size(), Scroll::Bottom => 0, }; } fn increase_scroll_limit(&mut self, count: usize) { let count = min(count, self.max_scroll_limit - self.history_size()); if count != 0 { self.raw.initialize(count, self.columns); } } fn decrease_scroll_limit(&mut self, count: usize) { let count = min(count, self.history_size()); if count != 0 { self.raw.shrink_lines(min(count, self.history_size())); self.display_offset = min(self.display_offset, self.history_size()); } } #[inline] pub fn scroll_down(&mut self, region: &Range, positions: usize) where T: ResetDiscriminant, D: PartialEq, { // When rotating the entire region, just reset everything. if region.end - region.start <= positions { for i in (region.start.0..region.end.0).map(Line::from) { self.raw[i].reset(&self.cursor.template); } return; } // Which implementation we can use depends on the existence of a scrollback history. // // Since a scrollback history prevents us from rotating the entire buffer downwards, we // instead have to rely on a slower, swap-based implementation. if self.max_scroll_limit == 0 { // Swap the lines fixed at the bottom to their target positions after rotation. // // Since we've made sure that the rotation will never rotate away the entire region, we // know that the position of the fixed lines before the rotation must already be // visible. // // We need to start from the top, to make sure the fixed lines aren't swapped with each // other. let screen_lines = self.screen_lines() as i32; for i in (region.end.0..screen_lines).map(Line::from) { self.raw.swap(i, i - positions as i32); } // Rotate the entire line buffer downward. self.raw.rotate_down(positions); // Ensure all new lines are fully cleared. for i in (0..positions).map(Line::from) { self.raw[i].reset(&self.cursor.template); } // Swap the fixed lines at the top back into position. for i in (0..region.start.0).map(Line::from) { self.raw.swap(i, i + positions); } } else { // Subregion rotation. let range = (region.start + positions).0..region.end.0; for line in range.rev().map(Line::from) { self.raw.swap(line, line - positions); } let range = region.start.0..(region.start + positions).0; for line in range.rev().map(Line::from) { self.raw[line].reset(&self.cursor.template); } } } /// Move lines at the bottom toward the top. /// /// This is the performance-sensitive part of scrolling. pub fn scroll_up(&mut self, region: &Range, positions: usize) where T: ResetDiscriminant, D: PartialEq, { // When rotating the entire region with fixed lines at the top, just reset everything. if region.end - region.start <= positions && region.start != 0 { for i in (region.start.0..region.end.0).map(Line::from) { self.raw[i].reset(&self.cursor.template); } return; } // Update display offset when not pinned to active area. if self.display_offset != 0 { self.display_offset = min(self.display_offset + positions, self.max_scroll_limit); } // Only rotate the entire history if the active region starts at the top. if region.start == 0 { // Create scrollback for the new lines. self.increase_scroll_limit(positions); // Swap the lines fixed at the top to their target positions after rotation. // // Since we've made sure that the rotation will never rotate away the entire region, we // know that the position of the fixed lines before the rotation must already be // visible. // // We need to start from the bottom, to make sure the fixed lines aren't swapped with // each other. for i in (0..region.start.0).rev().map(Line::from) { self.raw.swap(i, i + positions); } // Rotate the entire line buffer upward. self.raw.rotate(-(positions as isize)); // Swap the fixed lines at the bottom back into position. let screen_lines = self.screen_lines() as i32; for i in (region.end.0..screen_lines).rev().map(Line::from) { self.raw.swap(i, i - positions); } } else { // Rotate lines without moving anything into history. for i in (region.start.0..region.end.0 - positions as i32).map(Line::from) { self.raw.swap(i, i + positions); } } // Ensure all new lines are fully cleared. for i in (region.end.0 - positions as i32..region.end.0).map(Line::from) { self.raw[i].reset(&self.cursor.template); } } pub fn clear_viewport(&mut self) where T: ResetDiscriminant, D: PartialEq, { // Determine how many lines to scroll up by. let end = Point::new(Line(self.lines as i32 - 1), Column(self.columns())); let mut iter = self.iter_from(end); while let Some(cell) = iter.prev() { if !cell.is_empty() || cell.point.line < 0 { break; } } debug_assert!(iter.point.line >= -1); let positions = (iter.point.line.0 + 1) as usize; let region = Line(0)..Line(self.lines as i32); // Clear the viewport. self.scroll_up(®ion, positions); // Reset rotated lines. for line in (0..(self.lines - positions)).map(Line::from) { self.raw[line].reset(&self.cursor.template); } } /// Completely reset the grid state. pub fn reset(&mut self) where T: ResetDiscriminant, D: PartialEq, { self.clear_history(); self.saved_cursor = Cursor::default(); self.cursor = Cursor::default(); self.display_offset = 0; // Reset all visible lines. let range = self.topmost_line().0..(self.screen_lines() as i32); for line in range.map(Line::from) { self.raw[line].reset(&self.cursor.template); } } } impl Grid { /// Reset a visible region within the grid. pub fn reset_region>(&mut self, bounds: R) where T: ResetDiscriminant + GridCell + Clone + Default, D: PartialEq, { let start = match bounds.start_bound() { Bound::Included(line) => *line, Bound::Excluded(line) => *line + 1, Bound::Unbounded => Line(0), }; let end = match bounds.end_bound() { Bound::Included(line) => *line + 1, Bound::Excluded(line) => *line, Bound::Unbounded => Line(self.screen_lines() as i32), }; debug_assert!(start < self.screen_lines() as i32); debug_assert!(end <= self.screen_lines() as i32); for line in (start.0..end.0).map(Line::from) { self.raw[line].reset(&self.cursor.template); } } #[inline] pub fn clear_history(&mut self) { // Explicitly purge all lines from history. self.raw.shrink_lines(self.history_size()); // Reset display offset. self.display_offset = 0; } /// This is used only for initializing after loading ref-tests. #[inline] pub fn initialize_all(&mut self) where T: GridCell + Clone + Default, { // Remove all cached lines to clear them of any content. self.truncate(); // Initialize everything with empty new lines. self.raw.initialize(self.max_scroll_limit - self.history_size(), self.columns); } /// This is used only for truncating before saving ref-tests. #[inline] pub fn truncate(&mut self) { self.raw.truncate(); } /// Iterate over all cells in the grid starting at a specific point. #[inline] pub fn iter_from(&self, point: Point) -> GridIterator<'_, T> { let end = Point::new(self.bottommost_line(), self.last_column()); GridIterator { grid: self, point, end } } /// Iterate over all visible cells. /// /// This is slightly more optimized than calling `Grid::iter_from` in combination with /// `Iterator::take_while`. #[inline] pub fn display_iter(&self) -> GridIterator<'_, T> { let last_column = self.last_column(); let start = Point::new(Line(-(self.display_offset() as i32) - 1), last_column); let end_line = min(start.line + self.screen_lines(), self.bottommost_line()); let end = Point::new(end_line, last_column); GridIterator { grid: self, point: start, end } } #[inline] pub fn display_offset(&self) -> usize { self.display_offset } #[inline] pub fn cursor_cell(&mut self) -> &mut T { let point = self.cursor.point; &mut self[point.line][point.column] } } impl PartialEq for Grid { fn eq(&self, other: &Self) -> bool { // Compare struct fields and check result of grid comparison. self.raw.eq(&other.raw) && self.columns.eq(&other.columns) && self.lines.eq(&other.lines) && self.display_offset.eq(&other.display_offset) } } impl Index for Grid { type Output = Row; #[inline] fn index(&self, index: Line) -> &Row { &self.raw[index] } } impl IndexMut for Grid { #[inline] fn index_mut(&mut self, index: Line) -> &mut Row { &mut self.raw[index] } } impl Index for Grid { type Output = T; #[inline] fn index(&self, point: Point) -> &T { &self[point.line][point.column] } } impl IndexMut for Grid { #[inline] fn index_mut(&mut self, point: Point) -> &mut T { &mut self[point.line][point.column] } } /// Grid dimensions. pub trait Dimensions { /// Total number of lines in the buffer, this includes scrollback and visible lines. fn total_lines(&self) -> usize; /// Height of the viewport in lines. fn screen_lines(&self) -> usize; /// Width of the terminal in columns. fn columns(&self) -> usize; /// Index for the last column. #[inline] fn last_column(&self) -> Column { Column(self.columns() - 1) } /// Line farthest up in the grid history. #[inline] fn topmost_line(&self) -> Line { Line(-(self.history_size() as i32)) } /// Line farthest down in the grid history. #[inline] fn bottommost_line(&self) -> Line { Line(self.screen_lines() as i32 - 1) } /// Number of invisible lines part of the scrollback history. #[inline] fn history_size(&self) -> usize { self.total_lines().saturating_sub(self.screen_lines()) } } impl Dimensions for Grid { #[inline] fn total_lines(&self) -> usize { self.raw.len() } #[inline] fn screen_lines(&self) -> usize { self.lines } #[inline] fn columns(&self) -> usize { self.columns } } #[cfg(test)] impl Dimensions for (usize, usize) { fn total_lines(&self) -> usize { self.0 } fn screen_lines(&self) -> usize { self.0 } fn columns(&self) -> usize { self.1 } } #[derive(Debug, PartialEq, Eq)] pub struct Indexed { pub point: Point, pub cell: T, } impl Deref for Indexed { type Target = T; #[inline] fn deref(&self) -> &T { &self.cell } } /// Grid cell iterator. pub struct GridIterator<'a, T> { /// Immutable grid reference. grid: &'a Grid, /// Current position of the iterator within the grid. point: Point, /// Last cell included in the iterator. end: Point, } impl<'a, T> GridIterator<'a, T> { /// Current iterator position. pub fn point(&self) -> Point { self.point } /// Cell at the current iterator position. pub fn cell(&self) -> &'a T { &self.grid[self.point] } } impl<'a, T> Iterator for GridIterator<'a, T> { type Item = Indexed<&'a T>; fn next(&mut self) -> Option { // Stop once we've reached the end of the grid. if self.point >= self.end { return None; } match self.point { Point { column, .. } if column == self.grid.last_column() => { self.point.column = Column(0); self.point.line += 1; }, _ => self.point.column += Column(1), } Some(Indexed { cell: &self.grid[self.point], point: self.point }) } } /// Bidirectional iterator. pub trait BidirectionalIterator: Iterator { fn prev(&mut self) -> Option; } impl<'a, T> BidirectionalIterator for GridIterator<'a, T> { fn prev(&mut self) -> Option { let topmost_line = self.grid.topmost_line(); let last_column = self.grid.last_column(); // Stop once we've reached the end of the grid. if self.point == Point::new(topmost_line, Column(0)) { return None; } match self.point { Point { column: Column(0), .. } => { self.point.column = last_column; self.point.line -= 1; }, _ => self.point.column -= Column(1), } Some(Indexed { cell: &self.grid[self.point], point: self.point }) } }